
0x27 Automated Testing
Exercise Session

Recap

Fuzzing

● Automatic and dynamic software testing technique
● Key concept: fastest way to test a program is to run it

○ Runs on bare metal => “efficient”
● Analogy: obstacle course

○ Programs are riddled with control-flow decisions
○ Only one path can be taken at a time
○ path[-1] may depend on path[0:-1]

3[1] https://github.com/AFLplusplus/AFLplusplus

● In this Lab, we use AFL++[1], current State-of-the-Art Greybox Fuzzer

Environment Setup

4

● Download the Dockerfile
https://github.com/kdsjZh/COM402-Testing-Lab/blob/master/docker/Dockerfile

● docker build -t com402/testing:2024 /path/to/dockerfile
● docker run -it com402/testing:2024 bash

Ex1. Blackbox Fuzzing

Program Under Test

6

 unsigned int size;

 if (read(fd, &size, 4) != 4) {

 perror("Failed to read size");

 close(fd);

 return 1;

 }

 // Vulnerable buffer: fixed-size but could overflow based on file contents

 char buffer[MAX_BUFFER_SIZE];

 // Read 'size' bytes into the buffer,

 if (read(fd, buffer, size) < 0) {

 perror("Failed to read file content");

 close(fd);

 return 1;

 }

 // Null-terminate the buffer

 buffer[MAX_BUFFER_SIZE - 1] = '\0';

Program Under Test

7

 unsigned int size;

 if (read(fd, &size, 4) != 4) {

 perror("Failed to read size");

 close(fd);

 return 1;

 }

 // Vulnerable buffer: fixed-size but could overflow based on file contents

 char buffer[MAX_BUFFER_SIZE];

 // Read 'size' bytes into the buffer,

 if (read(fd, buffer, size) < 0) {

 perror("Failed to read file content");

 close(fd);

 return 1;

 }

 // Null-terminate the buffer

 buffer[MAX_BUFFER_SIZE - 1] = '\0';

if size > MAX_BUFFER_SIZE,
stack buffer overflows!

Ex1. Blackbox Fuzzing

8

[AFL++ 225c9e640908] /AFLplusplus # cd /COM402-Testing-Lab/demo/ex1

demo/ex1 # make clean && make

demo/ex1 # cat run.sh

Ex1. Blackbox Fuzzing

9

demo/ex1 # ./run.sh

Ex1. Blackbox Fuzzing

10

For Simple Programs, Blackbox fuzzers works pretty well.

But what if code becomes complex?

Ex2. Coverage Feedback

Program Under Test

12

 unsigned char *size_bytes = (unsigned char *)&size;

 unsigned char magic_bytes[2] = { 0xef, 0xbe};

 // Check and print messages for each matching byte

 if (size_bytes[0] == magic_bytes[0]) {

 printf("Byte 1 is match!\n");

 } else {

 printf("Byte 1 does not match.\n");

 return 1;

 }

 if (size_bytes[1] == magic_bytes[1]) {

 printf("Byte 2 is match!\n");

 } else {

 printf("Byte 2 does not match.\n");

 return 1;

 }

Program Under Test

13

 unsigned char *size_bytes = (unsigned char *)&size;

 unsigned char magic_bytes[2] = { 0xef, 0xbe};

 // Check and print messages for each matching byte

 if (size_bytes[0] == magic_bytes[0]) {

 printf("Byte 1 is match!\n");

 } else {

 printf("Byte 1 does not match.\n");

 return 1;

 }

 if (size_bytes[1] == magic_bytes[1]) {

 printf("Byte 2 is match!\n");

 } else {

 printf("Byte 2 does not match.\n");

 return 1;

 }

First two bytes of size have to
match magic bytes, else
program exit

Ex2. Coverage-Guided Fuzzing

14

[AFL++ 225c9e640908] /AFLplusplus # cd /COM402-Testing-Lab/demo/ex2

demo/ex2 # make clean && make

demo/ex2 # $AFL_PATH/afl-fuzz -i in/ -o out/ -n -- ./ex2 @@

Try Blackbox fuzzing for 5 minutes.

Does Blackbox fuzzing works? Why/Why not?

Ex2. Coverage-Guided Fuzzing

15

demo/ex2 # make clean && CC=afl-cc make

demo/ex2 # cat run.sh

We build with afl-cc, a clang wrapper that compile program and instrument
coverage

Ex2. Converge-Guided Fuzzing

16

Without Coverage With Coverage

Ex2. Coverage-Guided Fuzzing

17

If the magic bytes are validated byte-by-byte, coverage feedback works well,

But what if program compares 4 bytes at once?

Ex3. Magic Bytes

Program Under Test

19

 // Check and print messages for each matching byte

 if (size == MAGIC_BYTES) {

 printf("Magic Bytes match!\n");

 } else {

 printf("Magic Bytes not match.\n");

 return 1;

 }

Program Under Test

20

 // Check and print messages for each matching byte

 if (size == MAGIC_BYTES) {

 printf("Magic Bytes match!\n");

 } else {

 printf("Magic Bytes not match.\n");

 return 1;

 }

Check 4 Bytes at once

Ex3. Magic Bytes

21

demo/ex2 # cd /COM402-Testing-Lab/demo/ex3/

demo/ex3 # make clean && CC=afl-cc make

demo/ex3 # $AFL_PATH/afl-fuzz -i in/ -o out/ -- ./ex3 @@

Try fuzzing for 5 minutes

Does coverage guided fuzzing still work for magic bytes comparison?

Ex3. Magic Bytes

22

CmpLog[1] is a technique that extract the compared value from register and fill it
back to input.

It’s enabled in AFL++ if we compile program with AFL_LLVM_CMPLOG=1

[1] Aschermann, Cornelius, et al. "REDQUEEN: Fuzzing with Input-to-State
Correspondence." NDSS. Vol. 19. 2019.

Ex3. Magic Bytes

23

demo/ex3 # CC=afl-cc make ex3 && mv ex3 ex3.afl

demo/ex3 # CC=afl-cc AFL_LLVM_CMPLOG=1 make ex3 && mv ex3 ex3.cmplog

demo/ex3 # $AFL_PATH/afl-fuzz -i in/ -o out/ -c ./ex3.cmplog -l 3 -- ./ex3.afl @@

We build one binary with cmplog instrumentation and run AFL++ with cmplog
mutator enabled

Ex3. Magic Bytes

24

Without Cmplog With Cmplog

Ex3. Magic Bytes

25

All our assumption is based on that vulnerability will crash the program, e.g.,
overwriting the return address in the stack

But what if the vulnerability does not crash the program?

Ex4. Sanitizer

Program Under Test

27

 char *buffer = (char *)malloc(MAX_BUFFER_SIZE);

Now buffer is on heap, overflow does not directly crash the program

Ex4. Sanitizer

28

demo/ex3 # cd /COM402-Testing-Lab/demo/ex4

demo/ex4 # make clean && CC=afl-cc make

demo/ex4 # $AFL_PATH/afl-fuzz -i in/ -o out/ -- ./ex4 @@

Fuzz for 5 minutes, any finding?

Is the bug being triggered?

Ex4. Sanitizer

29

AddressSanitizer[1] is a technique that stops the program execution if the
memory safety is violated, i.e. don’t wait until program cannot execute, stop as
soon as its wrong.

It’s integrated both in gcc and clang, enabled in AFL++ if we compile with
AFL_USE_ASAN=1

Tip: set `ulimit -c unlimited`

[1] Serebryany, Konstantin, et al. "{AddressSanitizer}: A fast address sanity
checker." 2012 USENIX annual technical conference (USENIX ATC 12). 2012.

Ex4. Sanitizer

30

Without ASan With ASan

Ex5. Crash Analysis

Ex5. Crash Analysis

32

Crashes are not equal to bugs!

We still need to manually analyze the crashes to verify if its exploitable.

Take ex4 as example, run # ./ex4 /path/to/crash

Ex5. Crash Analysis

33

Ex5. Crash Analysis

34

 // Read 'size' bytes into the buffer,

 if (read(fd, buffer, size) < 0) {

 perror("Failed to read file

content");

 close(fd);

 return 1;

 }

Ex5. Crash Analysis

35

(gdb) set args /path/to/crash

(gdb) b ex4.c:52

Breakpoint 1 at 0xf3fff: file ex4.c, line 52.

(gdb) r

Starting program: /COM402-Testing-Lab/demo/ex4/ex4

out/default/crashes/id\:000000\,sig\:06\,src\:000003\,time\:6471\,execs\:19701\,op\:havoc\,rep

\:16

…

Byte 1 is match!

Byte 2 is match!

Breakpoint 1, main (argc=2, argv=0x7ffe2567e6e8) at ex4.c:52

52 if (read(fd, buffer, size) < 0) {

(gdb) display size

1: size = 2763964143 Size larger than buffer, Overflow!

Ex5. Crash Analysis

36

Ex5. Crash Analysis

37

Why the size is 2763964143, but the actual write size is 108?

demo/ex4 # ls -lh

out/default/crashes/id\:000000\,sig\:06\,src\:000003\,time\:6471\,execs\:19701\,op\:havoc\,rep\:16
-rw------- 1 root root 112 Nov 2 14:09
out/default/crashes/id:000000,sig:06,src:000003,time:6471,execs:19701,op:havoc,rep:16

